TRANSISTOR FET
TRANSISTOR FET
TRANSISTOR FET (Introducción).
Los transistores más conocidos son los llamados bipolares (NPN y PNP), llamados así porque la conducción tiene lugar gracias al desplazamiento de portadores de dos polaridades (huecos positivos y electrones negativos), y son de gran utilidad en gran número de aplicaciones pero tienen ciertos inconvenientes, entre los que se encuentra su impedancia de entrada bastante baja.
Existen unos dispositivos que eliminan este inconveniente en particular y que pertenece a la familia de dispositivos en los que existe un solo tipo de portador de cargas, y por tanto, son unipolares. Se llama transistor de efecto campo.
TRANSISTOR FET (Introducción).
Los transistores más conocidos son los llamados bipolares (NPN y PNP), llamados así porque la conducción tiene lugar gracias al desplazamiento de portadores de dos polaridades (huecos positivos y electrones negativos), y son de gran utilidad en gran número de aplicaciones pero tienen ciertos inconvenientes, entre los que se encuentra su impedancia de entrada bastante baja.
Existen unos dispositivos que eliminan este inconveniente en particular y que pertenece a la familia de dispositivos en los que existe un solo tipo de portador de cargas, y por tanto, son unipolares. Se llama transistor de efecto campo.
2) Explicación de la combinación de portadores.
Puesto que hay una tensión positiva entre el drenador y el surtidor, los electrones fluirán desde el surtidor al drenador (o viceversa según la configuración del mismo), aunque hay que notar que también fluye una corriente despreciable entre el surtidor (o drenador) y la puerta, ya que el diodo formado por la unión canal – puerta, esta polarizado inversamente.
En el caso de un diodo polarizado en sentido inverso, donde inicialmente los huecos fluyen hacia la terminal negativa de la batería y los electrones del material N, fluyen hacia el terminal positivo de la misma.
Lo anteriormente dicho se puede aplicar al transistor FET, en donde, cuando se aumenta VDS aumenta una región con empobrecimiento de cargas libres
2) Explicación de la combinación de portadores.
Puesto que hay una tensión positiva entre el drenador y el surtidor, los electrones fluirán desde el surtidor al drenador (o viceversa según la configuración del mismo), aunque hay que notar que también fluye una corriente despreciable entre el surtidor (o drenador) y la puerta, ya que el diodo formado por la unión canal – puerta, esta polarizado inversamente.
En el caso de un diodo polarizado en sentido inverso, donde inicialmente los huecos fluyen hacia la terminal negativa de la batería y los electrones del material N, fluyen hacia el terminal positivo de la misma.
Lo anteriormente dicho se puede aplicar al transistor FET, en donde, cuando se aumenta VDS aumenta una región con empobrecimiento de cargas libres
En los extremos del canal se hacen sendas conexiones óhmicas llamadas respectivamente sumidero (d-drain) y fuente (s-source), más una conexión llamada puerta (g-gate) en el collar.
Cuando seleccionamos un transistor tendremos que conocer el tipo de encapsulado, así como el esquema de identificación de los terminales. También tendremos que conocer una serie de valores máximos de tensiones, corrientes y potencias que no debemos sobrepasar para no destruir el dispositivo. El parámetro de la potencia disipada por el transistor es especialmente crítico con la temperatura, de modo que esta potencia decrece a medida que aumenta el valor de la temperatura, siendo a veces necesaria la instalación de un radiador o aleta refrigeradora. Todos estos valores críticos los proporcionan los fabricantes en las hojas de características de los distintos dispositivos.
Lo anteriormente dicho se puede aplicar al transistor FET, en donde, cuando se aumenta VDS aumenta una región con empobrecimiento de cargas libres
En el caso de un diodo polarizado en sentido inverso, donde inicialmente los huecos fluyen hacia la terminal negativa de la batería y los electrones del material N, fluyen hacia el terminal positivo de la misma.
Puesto que hay una tensión positiva entre el drenador y el surtidor, los electrones fluirán desde el surtidor al drenador (o viceversa según la configuración del mismo), aunque hay que notar que también fluye una corriente despreciable entre el surtidor (o drenador) y la puerta, ya que el diodo formado por la unión canal – puerta, esta polarizado inversamente.
Existen unos dispositivos que eliminan este inconveniente en particular y que pertenece a la familia de dispositivos en los que existe un solo tipo de portador de cargas, y por tanto, son unipolares. Se llama transistor de efecto campo.
Los transistores más conocidos son los llamados bipolares (NPN y PNP), llamados así porque la conducción tiene lugar gracias al desplazamiento de portadores de dos polaridades (huecos positivos y electrones negativos), y son de gran utilidad en gran número de aplicaciones pero tienen ciertos inconvenientes, entre los que se encuentra su impedancia de entrada bastante baja.
La figura muestra el croquis de un FET con canal N
Símbolos gráficos para un FET de canal N
Fundamento de transistores de efecto de campo:
Los transistores son tres zonas semiconductoras juntas dopadas alternativamente con purezas donadoras o aceptadoras de electrones.
Su estructura y representación se muestran en la tabla
Los transistores son tres zonas semiconductoras juntas dopadas alternativamente con purezas donadoras o aceptadoras de electrones.
Su estructura y representación se muestran en la tabla
Su estructura y representación se muestran en la tabla
Modelo de transistor FET canal n
Modelo de transistor FET canal p
|
En los MOSFET de enriquecimiento, una diferencia de tensión entre el electrodo de la compuerta y el substrato induce un canal conductor entre los contactos de drenador y surtidor, gracias al efecto de campo. El término enriquecimiento hace referencia al incremento de la conductividad eléctrica debido a un aumento de la cantidad de portadores de carga en la región correspondiente al canal, que también es conocida como la zona de inversión. El canal puede formarse con un incremento en la concentración de electrones (en un nMOSFET o nMOS), o huecos (en un pMOSFET o pMOS), en donde el sustrato tiene el tipo de dopado opuesto: un transistor nMOS se construye con un sustrato tipo p, mientras que un transistor pMOS se construye con un sustrato tipo n. Los MOSFET de empobrecimiento tienen un canal conductor que se debe hacer desaparecer mediante la aplicación de la tensión eléctrica en la compuerta, lo cual ocasiona una disminución de la cantidad de portadores de carga y una disminución respectiva de la conductividad.
El término 'metal' en el nombre de los transistores MOSFET es actualmente incorrecto debido a que el material de la compuerta, que antes era metálico, ahora se construye con una capa de silicio policristalino. En sus inicios se utilizó aluminio para fabricar la compuerta, hasta mediados de 1970 cuando el silicio policristalino comenzó a dominar el mercado gracias a su capacidad de formar compuertas auto-alineadas. Las compuertas metálicas están volviendo a ganar popularidad, debido a que es complicado incrementar la velocidad de operación de los transistores sin utilizar componentes metálicos en la compuerta.
De manera similar, el 'óxido' utilizado como aislante en la compuerta también se ha reemplazado por otros materiales con el propósito de obtener canales fuertes con la aplicación de tensiones más pequeñas.
Un transistor de efecto de campo de compuerta aislada o IGFET (Insulated-gate field-effect transistor) es un término relacionado que es equivalente a un MOSFET. El término IGFET es un poco más inclusivo, debido a que muchos transistores MOSFET utilizan una compuerta que no es metálica, y un aislante de compuerta que no es un óxido. Otro dispositivo relacionado es el MISFET, que es un transistor de efecto de campo metal-aislante-semiconductor (Metal-insulator-semiconductor field-effect transistor).
Estructura del MOSFET en donde se muestran las terminales de compuerta (G), sustrato (B), surtidor (S) y drenador (D). La compuerta está separada del cuerpo por medio de una capa de aislante (blanco). Dos MOSFETs de potencia con encapsulado TO-263 de montaje superficial. Cuando operan como interruptores, cada uno de estos componentes puede mantener una tensión de bloqueo de 120 voltios en el estado apagado, y pueden conducir una corriente continua de 30 amperios en el estado encendido, disipando alrededor de 100 watts de potencia y controlando cargas de alrededor de 2000 watts. Un fósforo se muestra como referencia de escala. Una sección transversal de un nMOSFET cuando la tensión VGS está por debajo de la tensión de umbral requerida para formar el canal conductor; no existe corriente o existe muy poca entre las terminales del surtidor y el drenador, y el interruptor está apagado. Cuando la tensión de compuerta aumenta y es positiva, atrae electrones, induciendo un canal de tipo n en el sustrato debajo del óxido, que permite el flujo de electrones entre las terminales dopadas de tipo n, y el interruptor está encendido.
Símbolos de circuito
Existen distintos símbolos que se utilizan para representar el transistor MOSFET. El diseño básico consiste en una línea recta para dibujar el canal, con líneas que salen del canal en ángulo recto y luego hacia afuera del dibujo de forma paralela al canal, para dibujar el surtidor y el drenador. En algunos casos, se utiliza una línea segmentada en tres partes para el canal del MOSFET de enriquecimiento, y una línea sólida para el canal del MOSFET de empobrecimiento. Otra línea es dibujada en forma paralela al canal para destacar la compuerta.
La conexión del sustrato, en los casos donde se muestra, se coloca en la parte central del canal con una flecha que indica si el transistor es PMOS o NMOS. La flecha siempre apunta en la dirección P hacia N, de forma que un NMOS (Canal N en una tina P o sustrato P) tiene la flecha apuntando hacia adentro (desde el sustrato hacia el canal). Si el sustrato está conectado internamente al surtidor (como generalmente ocurre en dispositivos discretos) se conecta con una línea en el dibujo entre el sustrato y el surtidor. Si el sustrato no se muestra en el dibujo (como generalmente ocurre en el caso de los diseños de circuitos integrados, debido a que se utiliza un sustrato común) se utiliza un símbolo de inversión para identificar los transistores PMOS, y de forma alternativa se puede utilizar una flecha en el surtidor de forma similar a como se usa en los transistores bipolares (la flecha hacia afuera para un NMOS y hacia adentro para un PMOS).
En esta figura se tiene una comparación entre los símbolos de los MOSFET de enriquecimiento y de empobrecimiento, junto con los símbolos para los JFET.
<><><><>
![]() | ![]() | ![]() | ![]() | ![]() |
Canal P
|
![]() | ![]() |
Canal N
| |||
JFET
|
MOSFET Enriq.
|
MOSFET Enriq. (sin sustrato)
|
MOSFET Empob.
|
Para aquellos símbolos en los que la terminal del sustrato se muestra, aquí se representa conectada internamente al surtidor. Esta es la configuración típica, pero no significa que sea la única configuración importante. En general, el MOSFET es un dispositivo de cuatro terminales, y en los circuitos integrados muchos de los MOSFET comparten una conexión común entre el sustrato, que no está necesariamente conectada a las terminales del surtidor de todos los transistores.
Con tres terminales o patillas y sustrato unido a la fuente "S"
Tipo Empobreci- miento N | Tipo Empobreci- miento P | Tipo Enriqueci- miento N | Tipo Enriqueci- miento P |
Con cuatro terminales o patillas |
Tipo N | Tipo P |
De doble puerta |
DARLINGTON |
NPN | NPN | PNP |
SCHOTTKY |
PNP | NPN |
Otras variantes de MOSFET |
Transistor de avalancha NPN
| ||||
Transistor de túnel NPN
| ||||
Transistor UJT* de doble base, Canal N
| ||||
Transistor CUJT** de doble base, Canal P
|
Funcionamiento
Estructura metal-óxido-semiconductorUna estructura metal-óxido-semiconductor (MOS) tradicional se obtiene haciendo crecer una capa de dióxido de silicio (SiO2) sobre un sustrato de silicio, y luego depositando una capa de metal o silicio policristalino, siendo el segundo el más utilizado. Debido a que el dióxido de silicio es un material dieléctrico, esta estructura equivale a un condensador plano, en donde uno de los electrodos ha sido reemplazado por un semiconductor.
Cuando se aplica un potencial a través de la estructura MOS, se modifica la distribución de cargas en el semiconductor. Si consideramos un semiconductor de tipo p (con una densidad de aceptores NA), p es la densidad de huecos; p = NA en el silicio intrínseco), una tensión positiva VGB aplicada entre la compuerta y el sustrato (ver figura) crea una región de agotamiento debido a que los huecos cargados positivamente son repelidos de la interfaz entre el aislante de compuerta y el semiconductor. Esto deja expuesta una zona libre de portadores, que está constituida por los iones de los átomos aceptores cargados negativamente (ver Dopaje (semiconductores)). Si VGB es lo suficientemente alto, una alta concentración de portadores de carga negativos formará una región de inversión localizada en una franja delgada contigua a la interfaz entre el semiconductor y el aislante. De manera distinta al MOSFET, en donde la zona de inversión ocasiona que los portadores de carga se establezcan rápidamente a través del drenador y el surtidor, en un condensador MOS los electrones se generan mucho más lentamente mediante generación térmica en los centros de generación y recombinación de portadores que están en la región de agotamiento. De forma convencional, la tensión de compuerta a la cual la densidad volumétrica de electrones en la región de inversión es la misma que la densidad volumétrica de huecos en el sustrato se llama tensión de umbral.
Esta estructura con un sustrato de tipo p es la base de los transistores nMOSFET, los cuales requieren el dopado local de regiones de tipo n para el drenador y el surtidor.
Metal–oxide–semiconductor structure on p-type silicon
Las uniones Puerta-Drenador y la Surtidor-Puerta están polarizadas en inversa de tal forma que no existe otra corriente que la inversa de saturación de la unión PN.
La zona n (en el FET canal n) es pequeña y la amplitud de la zona de deplexión afecta a la longitud efectiva del canal. La longitud de la zona de deplexión y depende de la tensión inversa (tensión de puerta).
La zona n (en el FET canal n) es pequeña y la amplitud de la zona de deplexión afecta a la longitud efectiva del canal. La longitud de la zona de deplexión y depende de la tensión inversa (tensión de puerta).
Tutorial de Electrónica Básica 7: Transistores (FET y MOSFET)
medicion de fet
PRUEBA DEL TRANSISTOR MOSFET
medicion de fet
PRUEBA DEL TRANSISTOR MOSFET
nota si este enlase aparece en ingles traducir con google
FET
MOSFET